
Hands-on 1 discussion



Supercomputing with R



Supercomputing structure
1. Create a parameter grid (data frame)

2. Create an analysis function that takes in a row of 
the parameter grid and outputs a result

3. Create a self-contained job script to load a chunk 
of the grid and run the analysis function on several 
rows in parallel

4. Create a shell script to run the R job with SLURM 
parameters





ABM for the Netherlands
• We have a good ABM implementation now.

• Let’s connect our ABM to real data

• Base our proportion parameter on population data about 
neighbourhoods in NL

(fake, illustrative) research question:

What proportion of non-western migrants is “happy” with 
different levels of neighbourhood preference Ba?



https://www.pdok.nl/introductie/-/article/cbs-wijken-en-buurten

ABM for the Netherlands



ABM for the Netherlands



Parameter grid

• There are 3248 neighbourhoods in NL

• We will inspect 91 different levels of Ba parameter

• For stability, we want 50 iterations to average over

3248*91*50 = 14 778 400 ABMs to run!



Tibbles and nested columns
• In the hands-on, you will go through the grid code

• This is just 1 version / implementation

• There are other ways to create the grid (probably faster, too)

• End result: one row per desired result



Tibbles and nested columns
• Useful function: 
expand_grid()



Tibbles and nested columns
• We will use tibbles with nested columns

• We unnest_longer() those nested columns to different 
rows:



More of this in the hands-on later



Supercomputing structure
1. Create a parameter grid (data frame)

2. Create an analysis function that takes in a row of 
the parameter grid and outputs a result

3. Create a self-contained job script to load a chunk 
of the grid and run the analysis function on several 
rows in parallel

4. Create a shell script to run the R job with SLURM 
parameters





The analysis function
What it does

Input a row from the grid

Output our quantity of interest 
(proportion of happy nonwestern migrants)

Should be robust, i.e., deal with problematic inputs gracefully

• You should spend time testing this, you will literally run this 
code millions of times



The analysis function



The R job script
What it does

Input a job number

Output a file with results from the ABMs and a log file

• Self-contained, runnable from the command-line

• Nice logging capabilities to show where things are going 
wrong if they do

• Within-node parallellization(!)



Self-contained R scripts
• You can run R in non-interactive mode 

(if it’s in your environment variables)



Logging
• There are several options available, e.g., the package 
logging

• For our case, we only need simple print (cat()) statements

• SLURM will store the R console output to a file

• Include statements in the script about which step is running

• Include timestamps / elapsed time



Within-node parallellization
• In SLURM, you get (and pay for!) at least 16 cores at a time

• Therefore, your R scripts need within-node parallellization

• Compute results for multiple grid rows at a time

• “Chunking” your grid





Within-node parallellization
• Get chunk

• Start cluster / child processes

• Compute chunk results on cluster

• Save output to file (results_0001.rds)



Within-node parallellization
• How big should the chunk be?

• Depends on 
• speed (ABM runs/second/core) 
• number of cores on the node (16?) 
• how long you want each job to take

• How long? Make it manageable, e.g., 30 minutes
• If something goes wrong (and something will go wrong!) you can 

rerun in reasonable amount of time
• Balance manageability and overhead: data loading, Rcpp code 

compiling, results storing



More of this in the hands-on later



Supercomputing structure
1. Create a parameter grid (data frame)

2. Create an analysis function that takes in a row of 
the parameter grid and outputs a result

3. Create a self-contained job script to load a chunk 
of the grid and run the analysis function on several 
rows in parallel

4. Create a shell script to run the R job with SLURM 
parameters





Shell script

• We will use array jobs (as per SLURM terminology)

sbatch –a 1-77 my_script.sh

• Will queue 77 jobs

• Each job has a different environment variable 
SLURM_ARRAY_TASK_ID

• Pass this environment variable to Rscript



Shell script





Supercomputing structure
1. Create a parameter grid (data frame)

2. Create an analysis function that takes in a row of 
the parameter grid and outputs a result

3. Create a self-contained job script to load a chunk 
of the grid and run the analysis function on several 
rows in parallel

4. Create a shell script to run the R job with SLURM 
parameters



Hands-on session 2


	Slide 1: Hands-on 1 discussion
	Slide 2: Supercomputing with R
	Slide 3: Supercomputing structure
	Slide 4
	Slide 5: ABM for the Netherlands
	Slide 6: ABM for the Netherlands
	Slide 7: ABM for the Netherlands
	Slide 8: Parameter grid
	Slide 9: Tibbles and nested columns
	Slide 10: Tibbles and nested columns
	Slide 11: Tibbles and nested columns
	Slide 12
	Slide 13: Supercomputing structure
	Slide 14
	Slide 15: The analysis function
	Slide 16: The analysis function
	Slide 17: The R job script
	Slide 18: Self-contained R scripts
	Slide 19: Logging
	Slide 20: Within-node parallellization
	Slide 21
	Slide 22: Within-node parallellization
	Slide 23: Within-node parallellization
	Slide 24
	Slide 25: Supercomputing structure
	Slide 26
	Slide 27: Shell script
	Slide 28: Shell script
	Slide 29
	Slide 30: Supercomputing structure
	Slide 31: Hands-on session 2

