
Supercomputing with R part 2

Erik-Jan van Kesteren

Agent-based model of all
neighbourhoods in the Netherlands

About me
Background

• PhD in Statistics (UU)
Structural Equation Models, high-dimensional data,
regularization & penalization, algorithms & optimization

• Assistant professor at Methodology & Statistics, UU
Human Data Science group, teaching Data Science master
courses

• Team lead for the ODISSEI Social Data Science (SoDa) team
Advancing data- & computation-intensive research in social
science

https://odissei-soda.nl/

About me
Relevant experience

• Experience with parallel programming, supercomputing,
large simulations
statistics, social sciences, a bit of neuroscience (structural
MRI), and a bit of bioinformatics (microarrays, epigenetics)

• Native in R, capable in Python
dabbled in C++, C#, web languages, Julia, and more

• Many research consultations

• Strongly advocating for open science
Make everything available all the time!

• Almost no experience with agent-based models!!!

About you
Write down in one short sentence why
you are here / what you hope to learn

The remainder of today
How to structure R projects for running

analyses on a SURF supercomputer

The remainder of today

Time Title

11:00 Lecture: computational limits in social science

11:45 Hands-on: a parallel agent-based model in R

12:30 Break

13:30 Lecture: supercomputing with R

14:15 Hands-on: submitting an R array job

15:15 Break

15:30 Lecture: combining & analysing the results

16:15 Conclusion & Q&A

Hands-on 1

Hands-on 2

Lecture 3

Computational limits in
social science

Experimental research in soc. sci.

• Come up with research question

• Design experiment

• Run experiment

• Analyze results (perform statistical test)

• Make inferences about found effect

Observational research in soc. sci.

• Come up with research question

• Collect data

• Create statistical model

• Make inferences about model (pay attention to assumptions)

Computational research in soc. sci.?

• Come up with research question

• Create generative / computational model

• Generate data from computational model

• (compare computational model data with real data)

• Make conclusions about computational model (pay attention
to assumptions)

Psych trend: theory construction

A formal model captures the principles of the explanatory
theory in a set of equations or rules (as implemented in a
computer program or simulation).

The theorist can then examine whether the theory, as
implemented in the formal model, does in fact generate the
phenomena as a matter of course, either in a simulation study
or through analytic derivations.

Borsboom et al. (2021), Theory Construction Methodology: A Practical Framework
for Building Theories in Psychology doi.org/10.1177/1745691620969647

https://doi.org/10.1177%2F1745691620969647

Robinaugh et al. (2019), A Computational Model of Panic Disorder 10.31234/osf.io/km37w

https://doi.org/10.31234/osf.io/km37w

With more parameter settings?

(this is not real, just for illustration)

Agent-based models

• Used in economics, sociology, ecology, finance, spatial
planning, social psychology, and more

• Create agents who interact in an environment

• Each agent has rules based on theory

• Simulating the system means applying these rules
repeatedly

• Then you can investigate the system

Agent-based models

Agent-based models

Agent-based models

Interim conclusion
1. Computational methods used by social scientists to

formalize & investigate theories

2. Simulation from computational models to inspect
phenomena following from model

3. Do this for different parameter settings

4. (2) and (3) may take a long time -> computational limits
reached!

Schelling’s model of segregation

Schelling segregation model

• Famous example of ABM in social behaviour

• What are the causes of de facto segregation in society?

• Theoretical / formal model of population dynamics

• Implemented as an agent-based model

• Conclusions drawn based on phenomena resulting from
this model

Schelling segregation model

• Environment: two-dimensional grid

• Agents belong to one of two groups

• Agents want to live close to others like themselves
• Agents have preference (Ba) for the proportion of

neighbours like them (B)

• If B < Ba, then move to random free location on grid

• Else stay

Schelling segregation model

Schelling segregation model

Schelling segregation model

Schelling segregation model

Schelling segregation model

Schelling segregation model

Schelling segregation model

• Micro behaviour: happy or unhappy with current
location -> move or stay

• Macro phenomenon: how does the distribution of
agents over the grid look?

Schelling segregation model

• Schelling’s finding: for groups of equal size with Ba ≳ 0.33,
the system is likely to end in a segregated state

• Below that, the system will stay in a mixed / random state

Conclusion
Even if there is only a mild in-group preference, the world
might still end up very segregated!

(keep assumptions in mind ☺)

Schelling segregation model

• Note: randomness in initialization & in movement to
different locations

• At which Ba will the system segregate?

• Need to run this model many times for different Ba
and compute expectation (average over the iterations)

• Monte carlo simulation

Schelling segregation model

Some more parameters you may want to vary:
• Number of distinct populations
• Relative population sizes
• Number of free spots in the grid
• Neighbour preference
• Radius for looking at neighbours
• Other extensions…

This will take a long time

Speeding up the ABM

Two options

Write faster,
optimized

code

Run multiple
ABMs at the
same time

Two options

Write faster,
optimized

code

Run multiple
ABMs at the
same time

Speeding up slow code

• There isn’t one solution for all types of code

• Speeding up slow code takes time

• Investigate smarter algorithms for your problem!

• If you are rewriting your R code, use vectorized &
matrix operations where possible (faster than loops!)

• Use benchmarking to check the speed & memory
usage of your functions (I like bench::mark())

Speeding up slow code

• Another step: rewrite in C++

• Depending on problem, this may yield great speedup

• In R: Rcpp package helps with this

An example of Rcpp speedup is in the
hands-on later

Parallel programming

• Many problems are of the “embarrassingly parallel” type
Little to no effort required to separate problem into
number of parallel tasks

• ABM itself is not embarrassingly parallel: time step 3
requires results from time step 2!

• Running the whole ABM several times to average over
uncertainty is embarrassingly parallel

Parallel programming

• Computers nowadays can do more than one task at a
time: threads
• Often: 4 or 8 threads
• Bigger computers have 12, 16 or 32 threads
• Depending on computer, potential speedup of 32 times!

(remember that our Rcpp effort gave ~10 times)

• Parallel programming is built into R (package parallel)

An example of parallel programming is
in the hands-on later

Interim conclusion
1. Today we are working with the Schelling agent-based model

2. Running the abm with different settings takes a long time

3. We can program the abm itself more efficiently

4. We can perform the abm in parallel

Let’s try it out!

Hands-on session 1

	Slide 1
	Slide 2: About me
	Slide 3
	Slide 4: About me
	Slide 5: About you
	Slide 6: The remainder of today
	Slide 7: The remainder of today
	Slide 8: Hands-on 1
	Slide 9
	Slide 10: Computational limits in social science
	Slide 11: Experimental research in soc. sci.
	Slide 12: Observational research in soc. sci.
	Slide 13: Computational research in soc. sci.?
	Slide 14: Psych trend: theory construction
	Slide 15
	Slide 16: With more parameter settings?
	Slide 17: Agent-based models
	Slide 18: Agent-based models
	Slide 19: Agent-based models
	Slide 20: Agent-based models
	Slide 21: Interim conclusion
	Slide 22
	Slide 23: Schelling’s model of segregation
	Slide 24: Schelling segregation model
	Slide 25: Schelling segregation model
	Slide 26: Schelling segregation model
	Slide 27: Schelling segregation model
	Slide 28: Schelling segregation model
	Slide 29: Schelling segregation model
	Slide 30: Schelling segregation model
	Slide 31: Schelling segregation model
	Slide 32: Schelling segregation model
	Slide 33: Schelling segregation model
	Slide 34: Schelling segregation model
	Slide 35: Schelling segregation model
	Slide 36
	Slide 37: This will take a long time
	Slide 38: Speeding up the ABM
	Slide 39: Two options
	Slide 40: Two options
	Slide 41
	Slide 42: Speeding up slow code
	Slide 43: Speeding up slow code
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Parallel programming
	Slide 48: Parallel programming
	Slide 49
	Slide 50
	Slide 51: Interim conclusion
	Slide 52: Hands-on session 1

