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Abstract

Large language models (LLMs) have become an essential tool for social scien-
tists and humanities (SSH) researchers who work with textual data. One particularly
valuable use case is automating text annotation, traditionally a time-consuming step
in preparing data for empirical analysis. Yet, many SSH researchers face two chal-
lenges: getting started with LLMs, and understanding how to evaluate and correct
for their limitations. The rapid pace of model development can make LLMs appear
inaccessible or intimidating, while even experienced users may overlook how anno-
tation errors can bias results from downstream analyses (e.g., regression estimates,
p-values), even when accuracy appears high. This tutorial provides a step-by-step,
hands-on guide to using LLMs for text annotation in SSH research for both Python
and R users. We cover (1) how to choose and access LLM APIs, (2) how to de-
sign and run annotation tasks programmatically, (3) how to evaluate annotation
quality and iterate on prompts, (4) how to integrate annotations into statistical
workflows while accounting for uncertainty, and (5) how to manage cost, efficiency,
and reproducibility. Throughout, we provide concrete examples, code snippets, and
best-practice checklists to help researchers confidently and transparently incorporate
LLM-based annotation into their workflows.

Contents

1 Introduction 4

1



2 Understand LLMs for Text Annotation 6

2.1 From Logistic Regression to Language Modelling . . . . . . . . . . . . . . . 7

2.2 A Segue to Prompting and Annotation . . . . . . . . . . . . . . . . . . . . 7

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Research Project Set-up 8

3.1 Know Your Research Question and Data . . . . . . . . . . . . . . . . . . . 9

3.2 Secure a Gold-Labelled Subset . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Design Good Prompts 12

4.1 Taxonomy and Anatomy of Prompts . . . . . . . . . . . . . . . . . . . . . 12

4.2 Prompt Engineering Techniques (Quick Wins). . . . . . . . . . . . . . . . . 13

5 Set Up the Computational Environment 17

5.1 A Quick Start with Cloud Notebooks . . . . . . . . . . . . . . . . . . . . . 17

5.2 LLM APIs vs. Local LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Obtain and Secure API Keys . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Minimal Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.5 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.6 Hyperparameters and Minimal Stability Settings . . . . . . . . . . . . . . . 19

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Run Your First Prompt Requests 20

6.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 System Prompt and Model Initialisation . . . . . . . . . . . . . . . . . . . 21

6.3 A Single Prompt Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4 Multiple Prompts Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Structuring LLM Annotations 23

7.1 Structured Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 A Single Prompt Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



7.3 Multiple Prompts Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Evaluate Annotation Quality 25

8.1 Compute Agreement between LLM and Gold Labels . . . . . . . . . . . . . 25

8.2 Identify Problematic Items and Examine Issues . . . . . . . . . . . . . . . 27

8.3 Fix Data Issues, Improve Prompt, Iteratively . . . . . . . . . . . . . . . . . 27

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Consider Annotation Error in Downstream Analyses 29

9.1 Systematic Error vs. Random Error in Annotations . . . . . . . . . . . . . 29

9.2 Effects on Downstream Analyses . . . . . . . . . . . . . . . . . . . . . . . . 29

9.3 Methods to Account for Annotation Error . . . . . . . . . . . . . . . . . . 30

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Taking Your Annotations to the Next Level 31

10.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10.4 Common Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 Conclusion and Outlook 33

A R Code 36

A.1 Obtain and Secure API Keys . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2 Minimal Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4 System Prompt and Model Initialisation . . . . . . . . . . . . . . . . . . . 37

A.5 A Single Prompt Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.6 Multiple Prompts Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.7 Structuring LLM Annotations . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.7.1 Structured Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



A.7.2 A Single Prompt Demo . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.7.3 Multiple Prompts Demo . . . . . . . . . . . . . . . . . . . . . . . . 40

A.8 Evaluate Annotation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1 Introduction

The recent proliferation of large language models (LLMs), such as GPT-4, Claude, and
Gemini, has transformed the way researchers annotate and analyse text data (Brown
et al., 2020; OpenAI, 2024a). Text annotation is a fundamental component of empirical
research in the social sciences and humanities (SSH), serving as the basis for content
analysis, sentiment measurement, stance detection, and narrative framing studies, among
many others (e.g., Krippendorff, 2018a; Grimmer and Stewart, 2013; Mohammad, 2016;
Conway et al., 2019). However, manual annotation is often costly, slow, and inconsistent
across annotators (Artstein and Poesio, 2008; Schaefer et al., 2023; Poletto et al., 2020).

LLMs offer a promising way to automate or augment this process, allowing researchers
to efficiently code large-scale textual data while maintaining flexibility and interpretabil-
ity (Gilardi et al., 2023; Jurgens et al., 2023). The promise is that text annotation tasks
(i.e., turning unstructured text into structured data on sentiment, topics, or other mea-
surements) can be performed automatically, cheaply, and reliably with a few well-crafted
prompts instead of extensive manual labelling.

Yet, for many SSH researchers, the barriers to adopting LLMs remain high. First,
LLMs are technically challenging and difficult to integrate into existing research work-
flows. Setting up access rights for application programming interfaces (APIs), managing
dependencies, or keeping up with the pace of model development can be overwhelming
to newcomers. Second, even when researchers successfully deploy LLMs for annotation,
they may underestimate the impact of annotation error on subsequent analyses. Imperfect
labels—no matter how high the apparent accuracy—can propagate to downstream statis-
tical models, biasing regression coefficients, inflating or deflating p-values, and ultimately
affecting substantive conclusions (Egami et al., 2024).

This tutorial paper addresses both of these challenges. While several recent reviews
have surveyed how LLMs and broader NLP methods are used in SSH research (e.g.,
Ziems et al., 2024; Abdurahman et al., 2025)), our goal is distinct: we provide a hands-
on, code- and project-focused guide that enables researchers to implement, evaluate, and
improve their own LLM-based annotation workflows. With an emphasis on transparent,
reproducible, and research-centred practice, we hope to help both novice and experienced
readers incorporate LLMs into their projects with ease and confidence.
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Concretely, this paper IS about: (1) a concise overview of how LLMs work for the
purposes of text annotation and what they can (and cannot) do; (2) a walk–through of
API–based workflows for text annotation for both Python and R users; (3) methods to
evaluate annotation quality and identify issues; (4) techniques to incorporate uncertainty
in statistical models; and (5) cost–saving and reproducibility tips for scaling annota-
tion projects. This paper IS NOT about: (1) the technical or architectural details of
LLMs; (2) benchmarking or ranking LLMs for SSH applications; (3) fine–tuning or do-
main adaptation; or (4) replacing the need for gold–standard human annotations entirely.
In summary, we situate LLMs as a new class of measurement instruments—powerful yet
imperfect tools that can augment human expertise, rather than replace it entirely.

The remainder of this paper is organized as a practical guide on implementing an
LLM text annotation workflow. Section 2 provides a brief, SSH–oriented background on
LLMs for text annotation. Section 3 covers how to set up the research project in terms
of research questions and data with ground-truth labels. Section 4 focuses on designing
good prompts, often the most impactful decision when using LLMs to annotate text data.
Section 5 describes how to use cloud notebooks to build a lightweight computational
environment to get started quickly (for both Python and R). Section 6 demonstrates
how to submit your first prompts and obtain LLM responses. Section 7 shows how to
structure LLM outputs for improving both annotation performance and readability of
LLM responses. Section 8 discusses how to evaluate annotation quality, fix potential
issues and iterate the annotation pipeline to improve annotation performance. Section 9
shows the danger of ignoring annotation error and methods to account for it in downstream
inferential analyses (e.g., linear regression). Section 10 offers additional tips on efficiency,
performance, and reproducibility—especially when scaling up a project.

Together, these sections aim to bridge the gap between conceptual understanding
and technical implementation, empowering SSH researchers to use LLMs critically and
effectively for text annotation. Lastly, the paper is accompanied by two Python and two
R codebooks that mirror the steps in the text.1

1Access the codebooks here https://sodascience.github.io/workshop_llm_data_collection/
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Running Example: Goal Setting and Planning in Learning

Throughout this paper, we use a running example drawn from educational re-
search: annotating weekly dialogues between a student and a rule-based chatbot,
with the goal of evaluating the specificity of the student’s goal setting and plan-
ning. The chatbot asks students a fixed list of questions designed to help them
set better learning goals. It functions as a structured questionnaire presented
through a user-friendly conversational interface, rather than as an intelligent as-
sistant like an LLM. The accompanying dataset is kindly provided by Gabrielle
Martins van Jaarsveld based on her research on self-regulated learning (Martins
Van Jaarsveld et al., 2025). A dialogue in the dataset looks like this:

Chatbot: Set an academic goal for the upcoming week.
Student: I would like to catch up on my geography reading
Chatbot: Add details to make your goal more specific.
Student: I need to either read the book from last week and this
week, or read my friends notes on the reading to take notes of my
own so I dont fall behind.
Chatbot: How will you measure progress on and achievement of
your goal?
Student: by the number of pages I write per day
Chatbot: Why is this goal important to you in the context of your
prior experiences and future goals?
Student: It is important to achieve because if I dont, I will fall
behind and most likely wont be ready for the exam.
Chatbot: Create a step-by-step plan for achieving this goal in the
coming week.
Student: 1. evaluate how much there is to do
2. get help from my friends
3. takes notes day by day

2 Understand LLMs for Text Annotation

LLMs such as GPT-4, Claude, and Gemini are built upon a family of deep learning archi-
tectures known as transformers(Vaswani et al., 2017). At their core, they are predictive
models: given a sequence of text, they estimate the probability of what comes next in the
form of tokens. Tokens refer to the smallest recognisable units by the model, including
words, subwords and punctuations. Although the underlying mathematics involves bil-
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lions of parameters and high-dimensional vector spaces, the basic logic is not foreign to
social scientists familiar with logistic regression.

2.1 From Logistic Regression to Language Modelling

In a logistic regression, we model the probability of an outcome y ∈ {0, 1} (e.g., “positive”
vs. “negative”) as a logistic transformation of a weighted combination of predictors:

P (y = 1 | x) = 1

1 + exp(−β⊤x)

where x is a vector of predictor values (x1, x2, . . . , xp) and β is a corresponding vector
of coefficients (β1, β2, . . . , βp). Each coefficient βj captures how strongly its predictor xj

influences the log-odds of the outcome.

An LLM performs a conceptually similar operation, but at a vastly larger scale. In-
stead of a handful of (typically manually specified) predictors, it internally computes
thousands of latent features that represent meaningful patterns in the input text. These
latent features are subsequently combined and weighted, much like predictors in a logis-
tic regression, and then transformed into a probability distribution over all possible next
tokens in the model’s pre-specified vocabulary.

Because the outcome space consists of many possible tokens rather than two classes,
a softmax transformation is used instead of the logistic function:

P (next token = ti | input text) =
exp(w⊤

i h)∑
j exp(w

⊤
j h)

,

where the latent feature vector h represent the meaningful patterns of the input text
(analogous to the predictor vector x), and wi is a learned weight vector for each possible
next token ti (analogous to the coefficients β in regression). Both h and wi share the same
dimensionality, and the denominator sums over all tokens in the vocabulary. Conceptually,
this makes an LLM a massively multivariate extension of logistic regression operating over
sequences of text.

2.2 A Segue to Prompting and Annotation

When we provide a simple prompt like “Classify the student’s goal as specific or vague:”,
the LLM conditions on this input and estimates the most likely continuation. Therefore,
we can treat the model as a flexible text classifier (Gilardi et al., 2023; Jurgens et al.,
2023). For instance, LLMs can help with SSH annotation tasks such as: (1) classifying
text segments into theoretically meaningful categories; (2) extracting entities or themes
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from open-ended narratives; (3) summarising or rephrasing qualitative data for coding; (4)
turning unstructured text data into tabular data for integration with statistical software.

However, several caveats are worth-noting:

• Probabilistic nature. LLMs produce the most likely continuation, not necessarily
the true or correct label. Small variations in model settings or prompt phrasing can
yield different outputs.

• Opacity of features. Unlike logistic regression, where β coefficients have interpretable
meanings, the internal weights of LLMs are distributed across billions of parameters
and cannot be directly interpreted (Bender et al., 2021).

• Training data and trainer dependence. Model behaviour reflects the distribu-
tions of its training data and intentions of its developers, which may include biases or
outdated information (Mitchell et al., 2019).

• Reproducibility issues. Models and their APIs may change silently over time;
recording model version and prompt text can help with reproducibility, but even then
recovering older models and their outputs can still be difficult.

• Hidden costs. Beyond API usage fees, employing LLMs for annotation requires time
and resources for researcher training, prompt engineering, and iterative experimenta-
tion. On small research projects, manual annotations might still be cheaper and more
efficient.

2.3 Summary

For SSH researchers, it is often useful to think of an LLM as an “expanded logistic regres-
sion” trained on the entire internet: it predicts repeatedly the next token (or label) using
internally computed latent features that meaningfully represent some input text. When
properly instructed via prompts, this predictive machinery can be repurposed for anno-
tation tasks such as coding interview transcripts, classifying news articles, or analysing
online discourse.

3 Research Project Set-up

In this section, we describe how to get started with a research project in which LLM-based
text annotation will likely play a role.
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3.1 Know Your Research Question and Data

Begin by clearly articulating your research questions and verifying whether your available
data can meaningfully address them. In other words, ensure that the construct you aim to
measure is actually represented in the textual material at hand. Some constructs—such
as personality traits inferred from social media posts—are inherently difficult to capture
because the texts often lack sufficient linguistic or contextual cues (Stajner and Yenikent,
2021; Fang et al., 2023). Likewise, for highly subjective annotation tasks such as hate
speech detection, even human annotators will naturally disagree. In both cases, large
language models (LLMs) are likely to encounter similar challenges. These considerations
highlight the importance of setting realistic expectations for LLM performance. Before
beginning annotation, define an a priori target level of agreement that would render the
LLM-generated labels useful for your downstream analyses. Establishing this target early
not only clarifies what constitutes “good enough” performance but also helps you decide
when further prompt tuning or model iteration is no longer necessary.

3.2 Secure a Gold-Labelled Subset

Establishing gold standard labels for a subset of your data is essential for verifying the
performance of the LLM annotations. Aim for a balanced subset (e.g., across classes or
score levels) so that evaluation is informative rather than dominated by the most frequent
category. If you anticipate subgroup analyses (e.g., by time period or data source), stratify
the gold standard labels accordingly to ensure that evaluation reflects those specific use
cases. Keep this gold standard subset strictly held out from any prompt examples or model
training data to avoid data leakage (Kapoor and Narayanan, 2023); this may artificially
inflate the agreement between LLM and gold-standard ratings.

Obtaining such a subset usually requires human annotation. In typical SSH research,
there are several possible scenarios:

• You already have a dataset with existing gold labels.

• You have a validated codebook or rubric from previous research and only need to recruit
new annotators.

• You have neither and need to develop a new codebook and collect annotations from
scratch.

• You plan to use a strong LLM to generate an initial gold-labelled subset, followed by
selective manual verification to save time and resources.

Regardless of the scenario, it is crucial to ensure a strong conceptual link between your
research question and the annotation instructions. The codebook serves as this bridge:
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it operationalizes your theoretical constructs and later forms the backbone of prompt
design—arguably the most important step in using LLMs for text annotation.

A good codebook or annotation manual is clear, complete, and easy to follow, avoid-
ing unnecessary jargon and ambiguity. Drawing on prior research, established rubrics,
and domain experts can greatly improve its quality. While a detailed discussion of best
practices for obtaining high-quality human annotations is beyond the scope of this paper
(see, e.g., Leech et al., 2003, for guidance), we emphasize that LLM-based annotation and
human annotation are conceptually similar processes—both rely heavily on well-designed
and unambiguous instructions.

Caveat Even carefully constructed gold-labelled subsets may contain errors or incon-
sistencies, which can lead to apparent disagreement between LLM and gold labels. In
Section 9, we discuss methods for diagnosing and accounting for such discrepancies.
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Running Example: Rubric

Here’s the rubric that Gabrielle Martins van Jaarsveld developed after synthe-
sizing prior research and expert opinions:

• Characteristic Measured: Goal specificity

• Definition: Goal must be specific rather than general. The con-
text and details of the goal should be explicitly described, and all
abstract terms are explained.

• Scoring Rules:

– Not Present (0): Extremely broad, with no details about
what this goal entails. States the goal using vague terms with-
out providing any descriptions of what they mean. Example
student response: “Prepare for the tutorial.”

– Partially Present (1): States the goal and offers some de-
scriptions of the terms used, however there are still some vague
terms which are not fully described. Example student response:
“Prepare for this week’s Friday morning tutorial by reading all
the materials.”

– Fully Present (2): No vague terms which are not described.
Clearly states the goal and uses clear descriptions to describe
exactly what they want to achieve. OR Gives a boundary de-
scriptor which offers context to the other ‘unexplained’ terms
in the goal. Example student response: “Prepare for this week’s
Friday morning tutorial by reading all 5 of the articles which
are assigned on canvas.”

Running Example: Agreement and Expectation

In a pilot study involving four human annotators with PhD level expertise, an
inter-annotator agreement above 0.80 was observed. Given this high agreement
score, the clarity in the rubric and the presence of explicit textual cues, we can
expect similar performance from an LLM on this task.
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3.3 Summary

Before writing any prompt or code, confirm that (1) the data plausibly contain the signals
needed to answer your research questions; (2) you have set a realistic target agreement;
and (3) you have a good translation between your research questions and instructions
(e.g., a codebook, rubric, or scoring manual); (4) have a balanced, held-out gold-standard
subset for evaluation.

4 Design Good Prompts

4.1 Taxonomy and Anatomy of Prompts

A prompt is defined as natural language input or instructions (i.e., text) that describe
the task that an LLM (and other AI systems) should perform. Prompt design is the most
crucial part of obtaining consistent and interpretable annotations from LLMs.

Most LLM APIs separate a system prompt (which sets overall model behavior) and a
user prompt (which contains the task input). In the context of LLM-based annotations,
system prompts should describe the task context , the concrete task itself, and the
expected output . In contrast, user prompts provide the input to the task (or say task
content).

Running Example: Basic Prompt Design

System Prompt:
A university student was given a series of questions from a chatbot, guiding
them through the process of setting and elaborating on an academic goal for
the coming week. You will be provided with the entire conversation including
the chatbot’s questions and the student’s answers. Your objective is to assess
the specificity of the student’s goal on a scale of 0 to 2 based on the entire
conversation.

User Prompt:
Chatbot: Set an academic goal for the upcoming week.
Student: I would like to catch up on my geography reading
Chatbot: Add details to make your goal more specific.
Student: [...] a

aThe rest of the conversation is omitted.
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Keeping these distinctions between system and user prompts makes the task persistent
and context-independent, which can also improve LLM processing efficiency.

4.2 Prompt Engineering Techniques (Quick Wins).

Prompt engineering refers to the process of modifying an instruction in order to produce
better outputs from LLMs. Several simple adjustments can markedly improve annotation
stability (OpenAI, 2023):

1. Clarity. Be explicit. Avoid ambiguity and vague wording. For instance, verbs/phrases
like “classify”, “assign one label” and “choose the best option” are preferred over “anal-
yse” and “interpret” (OpenAI, 2024b).

2. Role-based prompting. Assign a concise role (e.g., “You are an educational expert”)
to guide the LLM’s response style, tone and task interpretation (OpenAI, 2024b).

3. Step-by-step reasoning. When the task is complex, instruct the model to reason step
by step before giving the final label (a light form of chain-of-thought prompting (Wei
et al., 2022)).

4. Few-shot prompting. Provide a few labelled examples within the system prompt to
anchor decisions—especially helpful for nuanced categories (Brown et al., 2020).

We show below how to incorporate these four techniques into the system prompt of
our running example.
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Running Example: Improving Clarity in System Prompts

##TASK##
A university student was given a series of cues by a chatbot, guiding them
through the process of setting and elaborating on an academic goal for the coming
week. You will be provided with the entire conversation including the chatbot
cues, and the student answers. Your objective is to assess all the students answers
using a scoring rubric that evaluates the specificity of the goal on a scale of 0
to 2, representing the characteristic being not present, partially present, or fully
present. Specificity is defined as: Goal must be specific rather than general. The
context and details of the goal should be explicitly stated and described, and all
terms are explained.

• Score of 0: Extremely broad, with no details about what this goal entails.
States the goal using vague terms without providing any descriptions of what
they mean. Or the goal is an abstract concept to improve or work towards,
without any explanation of how this could be actionable or concrete.

• Score of 1: States an actionable or concrete goal and offers some descriptions
of the terms used. However, there are still some vague terms which are not
fully described.

• Score of 2: No vague terms which are not described. Clearly states the goal
and uses clear descriptions to describe exactly what they want to achieve.
OR gives a boundary descriptor which offers context to the other unexplained
terms in the goal.

Running Example: Using Role-based Prompting in System Prompts

Insert the following at the beginning of the system prompt:

“You are an expert in educational assessment and goal evaluation, with special-
ized expertise in applying deductive coding schemes to score the quality and
content of student goals. You have a deep understanding of scoring rubrics
and are highly skilled at analysing goals for specific characteristics according to
well-defined criteria.”
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Running Example: Integrating Step-by-Step Reasoning in System Prompts

##INSTRUCTIONS##
1. Understand the scoring rubric: REVIEW the rubric provided for specificity
to understand the criteria for scores of 0, 1, and 2. IDENTIFY the key elements
that distinguish a low score (0) from a high score (2).
2. Analyse the conversation in relation to specificity: ASSESS the extent to
which the goal is specific rather than general. Are context and details of the
goal explicitly described, and all terms explained? Is the goal concrete and
attainable and not something abstract?
3. Assign a score: Assign a score of 0, 1, or 2 based on the rubric. Use the
provided scored examples as a reference to ensure consistency with previous
assessments.
4. Provide a detailed rationale for the score: EXPLAIN why you assigned the
score by directly referencing aspects of the goal that meet or fall short of the
rubric criteria.
5. Check for consistency: Double-check that the score aligns with both the rubric
criteria and the rationale provided. Maintain objectivity by strictly adhering to
the rubric without introducing personal biases.

##EDGE CASE HANDLING##
If a goal is ambiguous or unclear, SCORE it on the lower end. If a goal appears
to partially meet the criteria for two different scores, SELECT the score that
best reflects the majority of the goals characteristics for that category.

##WHAT NOT TO DO##
Never apply personal opinion or assumptions outside the rubric criteria. never
give a score without a detailed explanation, even if the scoring seems obvious.
Never modify or assume student intent; score the goal exactly as written. Never
ignore the rubric or provided examples when scoring.
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Running Example: Incorporating Few-shot Examples in System Prompts

##EXAMPLE SCORING##
Example 1: [insert example conversation]
Example 1 Scoring: [insert score] ([insert reasoning])

Example 2: [insert example conversation]
Example 2 Scoring: [insert score] ([insert reasoning])

Prompt Templates and Automatic Generators Several online tools can help re-
searchers design effective prompts, such as OpenAI’s prompt examples (https://platform.
openai.com/examples) and Anthropic’s prompt library (https://docs.anthropic.com).
In addition, automatic prompt generators—such as Originality.ai Prompt Generator (https:
//originality.ai/blog/ai-prompt-generator, free) and Anthropic’s Prompt Gener-
ator (https://console.anthropic.com/dashboard, paid)—can serve as useful starting
points. However, these resources should be treated primarily as inspiration: all prompts
must ultimately be reviewed and adapted to the specific goals and context of your study.

Common Prompt Pitfalls Avoid typical sources of poor annotation performance:

• Lacking a clear structure or output indicator;

• Providing insufficient context or label definitions;

• Using inconsistent terminology.

A simple check is to give the same instruction to human coders—if they cannot agree
on the intended meaning, the LLM likely will not either. Furthermore, when comparing
LLM versus human annotations, keep the instructions as similar as possible to reduce
interpretive discrepancies.

Summary Prompt engineering involves refining instructions to elicit higher-quality out-
puts from LLMs. A few straightforward techniques can substantially improve annotation
quality: using clear and specific wording, assigning the model a role, prompting step-
by-step reasoning, and providing labelled examples. Automatic prompt libraries (e.g.,
from OpenAI or Anthropic) can serve as useful inspiration, but their templates should
always be adapted to the specific research context. Finally, avoid common pitfalls such as
vague structure, missing contextual information, or inconsistent terminology. If a prompt
appears ambiguous to human coders, it will almost certainly confuse the LLM.
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5 Set Up the Computational Environment

5.1 A Quick Start with Cloud Notebooks

There are many valid setup options for working with LLMs, including local installations,
cloud-based notebooks, virtual machines, and HPC clusters. For readers who are in-
experienced with R, Python, or programming in general, we recommend starting with
cloud-based notebooks such as Google Colab (for Python and R) and RStudio Cloud (by
Posit, for R). These platforms remove the need to manage local installations or hardware
and are free to use at the basic tier. Our accompanying Python and R notebooks are
designed to run on these services, as they are also intended as reference materials for an
interactive workshop. Throughout this paper, the step-by-step demonstrations assume a
Google Colab session for Python and an RStudio Cloud session for R; however, the same
commands can also be executed locally with only minor adjustments. Once you are fa-
miliar and comfortable with the cloud-based notebook approach as a quick starting point,
we recommend moving away from this iterative workflow toward a local, project-based
setup that is repeatable and reproducible—particularly for larger-scale text annotation
projects (see Section 10.3).

5.2 LLM APIs vs. Local LLMs

LLMs can be accessed through:

1. APIs, which provide ready-to-use models such as OpenAI’s GPTs, Anthropic’s Claude,
or Google’s Gemini. These require only an internet connection and an API key.

2. Local or open-source models, such as Llama 2 or Mistral, which can be deployed
on institutional hardware or high-performance clusters.

For most SSH researchers, cloud-based APIs provide the most accessible entry point.
They remove the need for dedicated GPU hardware while offering consistent performance
across sessions. However, it is important to point out this approach involves sending
research data to the API provider, which may raise privacy and data protection concerns
under the GDPR. Unless explicitly permitted by the study participants or covered by
an approved data management protocol, such data transfer is generally not allowed as
part of the research process. In such cases, running local LLMs offers a feasible and
GDPR-compliant, privacy-friendly alternative. Unfortunately, we do not cover the local
deployment of LLMs in this paper.

In this tutorial, we use the OpenAI API as the default provider and rely on the
langchain and ellmer libraries to facilitate interaction with LLM APIs in Python and R,
respectively. These libraries ensure the annotation pipeline is independent of the provider,
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so the same workflow is suitable for other API providers or local LLMs as well.

5.3 Obtain and Secure API Keys

All commercial LLM providers require an API key linked to a user account. After creating
an account on the respective provider’s website, you can generate an API key in your
user dashboard. The API key is a unique alphanumeric string that identifies you as
the authorized user—for example, c784df9e-bcf1-4145-83b6-a3c9ca281ee3. This key
grants access to the model endpoints and is used to monitor usage and manage billing.

A tip is to generate independent API keys for different projects such that you can
have a better overview of the activities and costs associated with each project. To prevent
accidental exposure of keys in shared repositories, store the key locally (and separately)
in a hidden file or as an environment variable (never inside code).

In the accompanying codebooks, the following code prompts a user to paste their key
interactively; the key is retained only for that session. Both the Python and the R code
store the entered API key as an environment variable.

Python:

# Prompt user for API key

os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

R: See Appendix A.1.

5.4 Minimal Dependencies

Install only what the accompaning notebooks require. For Python, that means a lightweight
data stack and an API client; for R, an API client and tidy data tooling.

Python:

# Install additional packages not included in Colab by default

%pip install krippendorff ppi-python

# Load required packages

import getpass # For secure password or API key input (hides typed text)

import os # For interacting with the operating system (e.g., paths, env vars)

import pandas as pd # Data manipulation and analysis (tables, CSVs, etc.)

import numpy as np # Numerical computing and array operations

from tqdm import tqdm # Progress bars for loops and iterations

18



from langchain.chat_models import init_chat_model # Initializes chat-based LLMs

from langchain_core.prompts import ChatPromptTemplate # Template for building

# structured LLM prompts

from pydantic import BaseModel, Field # Data validation and schema definition

import krippendorff # Computes Krippendorff's alpha

from ppi_py import ppi_ols_pointestimate, ppi_ols_ci # Implements correction of

# OLS regression estimates

import statsmodels.api as sm # Statistical modeling tools (e.g., regression)

import matplotlib.pyplot as plt # For plotting and visualizing data

import seaborn as sns # High-level visualization library

R: See Appendix A.2.

5.5 Model Choice

Keep it simple at the start. Different models balance accuracy, cost, and speed, the
various combinations of which may easily overwhelm users. To start with, we recommend
picking any reasonably priced model recommended by its provider (on their website). In
our tutorials, we use gpt-4o-mini, an OpenAI-recommended model for fast, affordable
and focused task completions.

Later on, keep costs in mind. Annotation projects involving tens of thousands of
texts can incur substantial costs due to the high number of tokens consumed. To address
this issue, researchers should estimate total token usage by running a small pilot on a
subset of their data. As a rough rule, one short paragraph (≈ 100 words) equals 120–150
tokens. Note that input tokens and output tokens are often priced differently.

5.6 Hyperparameters and Minimal Stability Settings

LLM outputs can vary slightly between runs due to their stochastic nature. You can
control this variance through the following commonly available hyperparameters:

• temperature: sets output randomness (0 = deterministic, 1 = creative);

– Low values (e.g., 0.3) make the model more deterministic and repetitive.

– High values (e.g., 0.6 or higher) increase diversity and creativity but may reduce
coherence.

• top_k and top_p: control sampling diversity.

– top_k: Restricts sampling to the k most likely next tokens. A lower value (e.g., 10)
makes output more deterministic. A higher value (e.g., 50 or 100) allows for more
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diversity.

– top_p: Instead of picking from the k most probable tokens, it selects from the
smallest set of tokens whose probabilities sum to p. Lower values (e.g., 0.3) make
responses more deterministic. Higher values (e.g., 0.9) increase diversity.

• max_tokens: limits output length;

• seed: fixes random initialization for reproducibility.

For example, to ensure consistent outputs from LLMs, you can set temperature =

0 and fix a seed if supported. Even so, a small degree of nondeterminism may remain
due to factors such as server scheduling. Note also that not all of these hyperparameters
are available for every LLM or API. Always consult the official documentation to verify
which model hyperparameters are supported before use.

5.7 Summary

Begin in a cloud notebook to avoid setup friction; use an API for a smooth first pass;
secure keys via secrets or environment variables; and install only the minimal packages
that our notebooks require. Set temperature = 0 and fix a seed if reproducibility is
desired; however, postpone more detailed hyperparameter decisions for later.

6 Run Your First Prompt Requests

6.1 Data Preparation

Start by deciding how you will store and access the text data to be annotated. For most
researchers, a simple .csv file is sufficient: it can be inspected with Excel, Numbers, or
any text editor, and can be easily read by both Python and R. More efficient formats
such as Parquet or Arrow can reduce size and speed up I/O, but they are not necessary
for small or medium-sized projects. Each row should correspond to one text unit (e.g., a
sentence, paragraph, or post) with a unique identifier and any contextual metadata (e.g.,
participant ID, date, or source).

In our tutorials, we use a toy dataset from our running example of annotating goal
specificity from student-chatbot conversations. The dataset contains the following columns:

20



Running Example: Dataset Description

• id: the identifier of the row (corresponding to a student’s entire conversation);

• conversation: the text of the conversation to annotate;

• score_specificity_llm: the specificity score produced by a carefully
prompted LLM, taking values 0, 1, or 2;

• score_specificity_human: the gold-standard specificity score assigned by
human expert annotators (also 0–2);

• performance: the student’s academic performance (1–10 scale).

To load the dataset:

Python:

# url where you can download our example data

data_url = "https://sodascience.github.io/workshop_llm_data_collection/data/" \

"srl_data_example.csv"

# Read CSV into dataframe

df = pd.read_csv(data_url)

R: See Appendix A.3.

6.2 System Prompt and Model Initialisation

Python:

system_prompt = """

You are an expert in educational assessment and goal evaluation, with

specialized expertise in applying deductive coding schemes to score the quality

and content of student goals.

##TASK##

A university student was given a series of prompts, guiding them through the

process of setting and elaborating on an academic goal for the coming week. You

will be provided with the entire conversation including the prompts, and the

student answers. Your objective is to assess the specificity of of the student's

goal on a scale of 0 to 2 based on the entire conversation.

"""
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model = init_chat_model("gpt-4o-mini",

model_provider="openai",

temperature=0,

max_tokens=1000)

R: See Appendix A.4.

6.3 A Single Prompt Demo

Python:

prompt_template = ChatPromptTemplate([

("system", system_prompt),

("user", "{conversation}")

])

# Create a prompt request with the system prompt and the user prompt based on

# the first conversation from the dataset

prompt_request = prompt_template.invoke({"conversation": df.iloc[0,1]})

# Check the prompt

prompt_request.to_messages()

# Prompt the model and inspect the response!

response = model.invoke(prompt_request)

print(response.content)

R: See Appendix A.5.

Voila! You have your first successful interaction with an LLM API!

Running Example: First Prompt Results

Results to be added.

6.4 Multiple Prompts Demo

Python:
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ids = df.id[:10].tolist()

conversations = df.conversation[:10].tolist()

responses = {}

for id, conversation in tqdm(zip(ids, conversations),

total=len(ids),

desc="Processing Requests"):

prompt_request = prompt_template.invoke({"conversation": conversation})

response = model.invoke(prompt_request)

responses[id] = response.content

print(responses['request_3'])

R: See Appendix A.6.

7 Structuring LLM Annotations

7.1 Structured Output

Python:

To force the LLM to produce outputs in formats specified by you, you need to use the
BaseModel and Field classes from the pydantic package. Below, we define our desired
output format as:

• specificity_score: an integer (either 0, 1 or 2) reflecting the specificity of a conver-
sation.

• reasoning: a string that provides the model’s reasoning.

class SpecificityFormat(BaseModel):

"""Always use this tool to structure your response to the user."""

specificity_score: int = Field(description="The specificity score of the" +

"entire conversation on a scale of 0, 1 and 2.")

reasoning: str = Field(description="Your reasoning process.")

R: See Appendix A.7.1.

7.2 A Single Prompt Demo

.
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Python:

# Bind responseformatter schema to the model

model_structured = model.with_structured_output(SpecificityFormat)

# Run a request throught this new model

prompt_request = prompt_template.invoke({"conversation": df.iloc[0,1]})

structured_response = model_structured.invoke(prompt_request)

dict(structured_response)

R: See Appendix A.7.2.

7.3 Multiple Prompts Demo

Being able to work with multiple prompts at the same time and obtain structured output
will save you a substantial amount of time in research projects!

Python:

structured_responses = {}

for id, conversation in tqdm(zip(ids, conversations),

total=len(ids),

desc="Processing Messages"):

prompt_request = prompt_template.invoke({"conversation": conversation})

structured_response = model_structured.invoke(prompt_request)

# Below we save only the specificity scores

structured_responses[id] = dict(structured_response)["specificity_score"]

structured_responses

R: See Appendix A.7.3.

Running Example: Structured Output Results

Results to be added.
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8 Evaluate Annotation Quality

8.1 Compute Agreement between LLM and Gold Labels

A crucial step in evaluating the quality of LLM-based annotations is to quantify their
level of agreement with a reference or “gold-standard” dataset, typically obtained from
trained human annotators. The choice of agreement metric depends on the nature of the
annotation outcome—categorical, ordered, or continuous—and each metric carries specific
assumptions, strengths and limitations.

Categorical outcomes. For nominal labels (e.g., news categories such as politics, sci-
ence, art), the most commonly used metrics include simple accuracy, Cohen’s κ (Cohen,
1960), and Krippendorff’s α (Krippendorff, 2018b). Accuracy is intuitive and easy to inter-
pret, but it ignores chance agreement and is sensitive to class imbalance (i.e., when there
are rare categories). Therefore, accuracy is typically only used with balanced datasets.
Cohen’s κ adjusts for chance agreement between two raters, providing a more conservative
estimate, while Krippendorff’s α generalises this idea to multiple annotators and handles
missing data. However, both κ and α can be unstable in cases of highly skewed class
distributions or small sample sizes.

Ordered outcomes. When the labels are ordinal (e.g., Likert-type ratings), weighted
versions of κ or α are preferred because they account for the magnitude of disagreement
between categories. Linear or quadratic weights penalize larger discrepancies more heav-
ily, thereby reflecting the underlying ordering of the labels (Gwet, 2014). Nevertheless,
even weighted metrics may obscure systematic directional biases (e.g., when an LLM
consistently rates higher or lower than human annotators), which should be examined
separately.

Continuous outcomes. For continuous or quasi-continuous2 variables (e.g., predicted
probabilities, test scores, frequencies), agreement is typically quantified using correlation-
based or error-based measures. The Pearson correlation coefficient (r) assesses the strength
of linear association, while the intraclass correlation coefficient (ICC) (Shrout and Fleiss,
1979) measures both correlation and absolute agreement. Alternatively, mean absolute
error (MAE) or root mean squared error (RMSE) can be used to express the average
discrepancy in scale units. Correlation metrics are scale-invariant but do not capture
systematic shifts (e.g., consistent over- or underestimation), whereas error-based metrics

2Quasi-continuous variables are discrete variables (often ordinal or interval-like) with many possible
values that are treated as continuous for practical or statistical reasons.
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are sensitive to such shifts but depend on the units of measurement.

Summary. In practice, no single metric fully captures annotation quality. A compre-
hensive evaluation often combines multiple indicators—for instance, reporting both κ and
class-specific precision/recall for categorical data, or both ICC and MAE for continuous
data—to balance interpretability and robustness. Additionally, theses statistics should be
complemented with qualitative inspection of disagreements, as LLM-human mismatches
may stem from annotation ambiguity or under-defined label definitions rather than model
error.

Table 1: Common Agreement Metrics by Data Types.

Metric Data Type Strengths Limitations

Accuracy Categorical Simple and interpretable Ignores chance agreement;
affected by class imbalance

Cohen’s κ Categorical Adjusts for chance agree-
ment

Sensitive to skewed dis-
tributions and class
imbalance

Krippendorff’s α Categorical
OR ordered

Handles missing data; gen-
eralizes to many raters

Computationally intensive;
unstable in small samples

Weighted κ Ordered Accounts for distance be-
tween labels

May hide systematic direc-
tional bias

Pearson r Continuous Simple linear association Ignores scale or bias
differences

ICC Continuous Captures correlation and
absolute agreement

Requires model choice; as-
sumes residual normality

MAE / RMSE Continuous Expressed in scale units;
intuitive

Sensitive to outliers and
units of measurement

We showcase below code implementations of Krippendorff’s α for its wide application
in SSH research.

Python:

Implement a handy function to calculate Krippendorff’s Alpha (i.e., agreement) be-
tween two lists of specificity scores.

def compute_krippendorff_alpha(x: list[int], y: list[int]):

# Format data into a reliability matrix (rows=raters, cols=items)

data_krippendorff = np.array([x, y])

# Compute Krippendorff's Alpha (interval metric)

kripp_alpha = krippendorff.alpha(reliability_data=data_krippendorff,

level_of_measurement='interval')

return kripp_alpha
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Let’s check the agreement between the specificity scores we got from the LLM above
and the human expert-coded specificity scores!

score_specificity_human = df.score_specificity_human[:10].tolist()

structured_response_values = list(structured_responses.values())

print("Krippendorff's Alpha:",

compute_krippendorff_alpha(structured_response_values, score_specificity_human))

R:

Running Example: Annotation Quality

Results to be added.

8.2 Identify Problematic Items and Examine Issues

Regardless of the overall agreement score, it is essential to examine and, where possible,
correct potentially problematic items. Quantitative agreement metrics can mask specific
sources of error, so visual inspection of cases with disagreements between the LLM and
the gold labels is highly recommended. Such inspection may reveal that (a) the gold
annotation itself is incorrect due to human oversight; (b) the LLM output violates task
specifications, for example by producing a value outside the permitted range; or (c) the
LLM fails to account for certain nuances, exceptions, or contextual cues described in
the prompt. Identifying these patterns not only improves label quality but also clarifies
whether disagreement stems from annotation ambiguity, model behavior, or flaws in the
instruction design.

Running Example: Identified Issues

Results to be added.

8.3 Fix Data Issues, Improve Prompt, Iteratively

Once potential issues have been identified, the next step is to iteratively refine both the
data and the prompting procedure. This process typically involves three complementary
actions: (1) fixing the data itself, (2) improving the prompt or task specification, and (3)
re-running the annotation workflow to verify improvements.
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1. Correct or flag problematic items. If disagreements stem from clear human or
LLM errors (e.g., invalid label values, missing entries, or mismatched examples), these
cases should be corrected or flagged for exclusion. When corrections are uncertain, it is
good practice to keep both the original and revised versions in a transparent audit trail,
noting the rationale for the change. In projects with multiple annotators, such cases can
also be reviewed by an adjudicator or majority vote to ensure consistency.

2. Refine prompt instructions. When disagreements reflect systematic LLM mis-
interpretations, the prompt itself likely needs revision. Common improvements include:
clarifying category definitions, adding boundary examples, explicitly stating how to handle
ambiguous or multi-faceted cases, and enforcing stricter output formatting. For instance,
if the LLM tends to overestimate specificity, the prompt can be refined with counterex-
amples (e.g., “Responses that only restate the goal without a concrete plan should receive
a 0”). Iterative prompt adjustments are particularly effective when combined with struc-
tured outputs (e.g., JSON schema) that enforce the required response format.

3. Re-run and re-evaluate. After each refinement round, re-run the annotation and
re-calculate agreement metrics to assess improvement. A well-documented iteration log in-
cluding date, prompt version, and agreement statistics allows researchers to track progress
and determine whether changes in agreement reflect genuine prompt improvement or ran-
dom variation. If multiple prompt versions are tested, a simple comparison table or plot
can visually summarise which modifications led to more reliable results.

Running Example: Iterative Refinement

Results to be added.

8.4 Summary

Evaluating LLM-based annotations is not a one-off step but a cyclic process of measure-
ment, diagnosis, and improvement. Quantitative agreement metrics such as κ, α, and
ICC provide essential summaries of reliability, yet they must be interpreted alongside
qualitative inspection of disagreements and iterative prompt adjustments. Poor agree-
ment does not necessarily imply model failure but often signals ambiguous instructions,
unclear category boundaries, or inconsistencies in the gold data itself. An effective eval-
uation workflow therefore combines agreement assessment, error diagnosis and iterative
refinement. Through this systematic and transparent approach, researchers can ensure
that LLM annotations not only replicate human judgments but also reveal where human
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definitions and instructions themselves may need clarification, turning evaluation into a
process of both quality control and conceptual refinement.

9 Consider Annotation Error in Downstream Analyses

While inter-rater agreement provides an indication of annotation quality, researchers
should also consider how annotation error—both random and systematic—can influence
downstream analyses. Ignoring such error may lead to biased parameter estimates, atten-
uated relationships, or incorrect inferences.

9.1 Systematic Error vs. Random Error in Annotations

Annotation errors can broadly be classified as either random or systematic. Random
error reflects unsystematic noise in the annotation process, such as inconsistent judg-
ments or stochastic variation in LLM outputs across repeated runs. These errors increase
measurement variance but do not bias estimates on average. In contrast, systematic er-
ror occurs when annotations consistently deviate from the true construct in a particular
direction—for instance, when an LLM systematically overestimates sentiment intensity
or misclassifies a specific subgroup due to training data biases. Systematic error distorts
the meaning of measured variables, leading to biased estimates even in large samples.

Distinguishing between these two sources of error is critical: while random error pri-
marily reduces reliability and statistical power, systematic error threatens validity by
introducing predictable distortions in downstream findings.

9.2 Effects on Downstream Analyses

Annotation error affects both descriptive and inferential analyses. In simple descriptive
statistics, random error in an annotated variable Y ∗ inflates its variance and attenuates
estimated means toward the center of the scale. When Y ∗ is used as a dependent or
independent variable in a regression model, such measurement error leads to biased or
inconsistent coefficient estimates.

For instance, if the observed variable Y ∗ represents an error-prone version of the true
latent construct Y , we can express the measurement model as

Y ∗ = Y + ε,
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where ε denotes the annotation error term. In regression settings of the form

Y ∗ = β0 + β1X + η,

random error in Y ∗ (classical measurement error) inflates residual variance but leaves β̂1

unbiased, whereas random error in a predictor variable X∗ = X + ε typically attenuates
β̂1 toward zero (therefore also called attenuation error) (Fuller, 1987). The magnitude of
distortions due to random error depends on the reliability of the annotated variable, often
expressed as

ρ =
Var(Y )

Var(Y ∗)
= 1− Var(ε)

Var(Y ∗)
.

Low reliability (ρ close to 0) implies severe attenuation of correlations and regression
coefficients, whereas high reliability (ρ close to 1) indicates negligible distortion.

Systematic error, by contrast, arises when the measurement error has a nonzero mean
or correlates with predictors. A constant additive bias (e.g., when all annotations are
consistently rated 0.5 points higher) shifts the intercept of the regression model but does
not affect the estimated slope. However, when the bias varies with the true variable or with
other predictors—such that E[ε|X] ̸= 0 or Cov(X, ε) ̸= 0—it introduces directional bias
in the slope as well. In such cases, the estimated effect sizes may be systematically over-
or underestimated, leading to distorted substantive conclusions even when the observed
variable appears reliable.

9.3 Methods to Account for Annotation Error

Several statistical approaches can adjust for the presence of annotation error in down-
stream analyses. When independent reliability estimates are available (e.g., from re-
peated human or LLM annotations), one can apply reliability correction or attenuation
adjustment, scaling observed coefficients by the estimated reliability ratio (Fuller, 1987).
Alternatively, error-in-variables (EIV) or latent-variable models explicitly incorporate
measurement error into the estimation process. These methods treat the true construct
as a latent variable and model the noisy observed annotation as an imperfect indicator.
Another option is to conduct a sensitivity analysis, assessing how conclusions vary under
plausible levels of measurement error variance.

Our accompanying notebooks demonstrate two practical implementations:

• Python: The ppi_py package provides functions such as ppi_ols_pointestimate()

and ppi_ols_ci() for correcting regression coefficients under classical measurement
error assumptions. Example code is provided in the accompanying Python notebook.

• R: The dsl package implements a declarative syntax for specifying measurement mod-
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els and performing bias correction in regression and structural equation settings. Ex-
ample R code can be found in the accompanying R notebook.

Together, these approaches enable researchers to quantify and, where possible, miti-
gate the influence of annotation error on downstream estimates, thereby improving the
validity and interpretability of LLM-assisted analyses.

Running Example: Regression Correction

Results to be added.

9.4 Summary

When annotations are used as variables in downstream analyses, annotation error can
substantially influence both descriptive statistics and inferential models. Random er-
ror primarily reduces reliability, inflating variance and attenuating observed associations,
while systematic error introduces directional bias that can distort estimated means, slopes,
and substantive interpretations. To ensure valid conclusions, researchers should assess the
reliability of annotated variables, examine potential sources of systematic bias, and apply
statistical corrections such as reliability adjustment, error-in-variables modelling, or sen-
sitivity analysis. By explicitly accounting for annotation error, downstream analyses can
more accurately reflect the underlying constructs that LLMs are intended to measure.

10 Taking Your Annotations to the Next Level

Once the basic annotation workflow has been established, researchers can further enhance
the efficiency, performance, and reproducibility of their LLM-assisted annotation pipelines.
This section outlines several best practices and advanced strategies, as well as common
pitfalls to avoid.

10.1 Efficiency

Caching. When running iterative or large-scale annotation tasks, repeated prompts can
lead to unnecessary API calls and cost inefficiencies. To minimize redundancy, ensure that
the starting tokens of your system prompt (i.e., the instruction and context that precede
the variable content) remain identical across calls. This allows effective caching and reuse
of precomputed token embeddings, reducing both latency and expenses.
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Batch processing. For large datasets, asynchronous batch submission is considerably
more efficient than sending prompts sequentially. The OpenAI Batch API allows re-
searchers to upload a JSONL file of requests and retrieve results within roughly 24 hours
at approximately 50% of the regular price. A detailed step-by-step tutorial is available at
https://odissei-soda.nl/tutorials/llm_batch_structured_output/.

10.2 Performance

Model hyperparameter tuning. The most influential hyperparameter for annotation
stability is the temperature. Lower temperatures (e.g., 0 to 0.3) produce more determinis-
tic outputs and are recommended for classification or coding tasks. Higher values increase
variability and may encourage creativity, but at the cost of consistency. Where possible,
evaluate multiple temperature settings using a small validation subset to identify the best
balance between accuracy and diversity.

Consistency prompting. LLMs can exhibit stochastic variation even under identical
prompts. A simple yet powerful method to increase reliability is to generate multiple
responses for each item and aggregate the results—for example, by taking the majority
vote for categorical outputs or the mean for continuous scores. This ensemble-like strategy
smooths out random fluctuations and provides a more stable annotation signal.

10.3 Reproducibility

Metadata documentation. Reproducibility requires precise documentation of all com-
ponents involved in the annotation process. This includes the full prompt text, model
identifiers and version numbers (with links to model cards), data descriptions (via data
cards), hyperparameter settings, and timestamps of API calls. Maintaining such metadata
enables both replication and transparent reporting.

Version control and archiving. Store annotation scripts, prompts, and metadata
in a version-controlled repository (e.g., GitHub or GitLab). For long-term preservation
and citation, deposit tagged releases on platforms such as Zenodo or OSF. This practice
ensures that future researchers can reproduce your annotation pipeline exactly, even if
model versions or API defaults evolve over time.
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10.4 Common Pitfalls

Data contamination. Avoid publishing or sharing your data and labels before com-
pleting the annotation experiment. Public exposure of the dataset may lead to unintended
inclusion of your materials in the model’s training corpus, thereby inflating performance.

Data leakage in few-shot examples. When providing few-shot examples within the
prompt, ensure that these examples are drawn exclusively from the training portion of
your data. Leakage of test instances or related materials into few-shot demonstrations
can yield overly optimistic performance estimates and compromise validity.

10.5 Summary

This section highlighted practical strategies to optimize annotation efficiency, perfor-
mance, and reproducibility. Caching and batch processing can substantially reduce com-
putational cost, while careful hyperparameter tuning and consistency prompting improve
reliability. Transparent documentation and version control ensure that annotations re-
main verifiable and reusable. Finally, avoiding contamination and leakage safeguards the
integrity of both model evaluation and scientific inference.

11 Conclusion and Outlook

LLM-assisted annotation presents a promising new paradigm for large-scale text analy-
sis in the social sciences and humanities. Yet, as with any measurement instrument, its
utility depends on careful validation and transparent methodological design. By system-
atically evaluating annotation quality, modeling annotation error, and adopting repro-
ducible practices, researchers can leverage LLMs to generate data that are both efficient
and scientifically credible.

Looking ahead, improvements in open-weight LLMs, alignment techniques, and inter-
pretability tools will further expand the methodological toolkit for automated annotation.
Integrating these advances with principles from measurement theory and psychometrics
will be key to ensuring that LLM-based annotations serve as valid and reliable instruments
for empirical research.
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A R Code

A.1 Obtain and Secure API Keys

# Prompt user for API key

openai_api_key <- readline(prompt = "Enter API key for OpenAI: ")

Sys.setenv(OPENAI_API_KEY = openai_api_key)

A.2 Minimal Dependencies

# Install additional packages not included in Colab by default

install.packages(c("ellmer", "patchwork", "irr", "gridExtra"))

library(devtools)

install_github("naoki-egami/dsl", dependencies = FALSE)

# Load required packages

library(tidyverse) # Core collection of R packages for data manipulation,

# visualization, and analysis (e.g., dplyr, ggplot2)

library(patchwork) # Combines multiple plots into a single frame

library(gridExtra) # Arranges multiple plots or tables on one page
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library(ellmer) # R interface for working with LLM APIs

library(irr) # Computes inter-rater reliability metrics

library(dsl) # Implements correction of OLS regression estimates

A.3 Data Preparation

# url where you can download our example data

data_url <- paste0(

"https://sodascience.github.io/workshop_llm_data_collection/data/",

"srl_data_example.csv"

)

# Read CSV into dataframe

df <- read_csv(data_url)

A.4 System Prompt and Model Initialisation

system_prompt <- "

You are an expert in educational assessment and goal evaluation, with

specialized expertise in applying deductive coding schemes to score the quality

and content of student goals.

##TASK##

A university student was given a series of prompts, guiding them through the

process of setting and elaborating on an academic goal for the coming week. You

will be provided with the entire conversation including the prompts, and the

student answers. Your objective is to assess the specificity of of the student's

goal on a scale of 0 to 2 based on the entire conversation.

"

# Define a function that makes a call to the OpenAI API for gpt-4o-mini.

call_openai_api <- function(system_prompt, user_prompt) {

chat <- chat_openai(

model = "gpt-4o-mini",

system_prompt = system_prompt,

seed = 42,

api_args = list(temperature = 0, max_tokens = 1000),
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echo = "none" #suppress the output from being printed

)

return(chat$chat(user_prompt))

}

A.5 A Single Prompt Demo

# Create a prompt request with the system prompt and the user prompt based on

# the first conversation from the dataset.

response <- call_openai_api(

system_prompt = system_prompt,

user_prompt = df[["conversation"]][1]

)

# Check the first response

cat(response)

A.6 Multiple Prompts Demo

# initialize output list

responses <- list()

for (i in 1:10) {

# extract current info

cur_convo <- df |> slice(i) |> pull("conversation")

cur_id <- df |> slice(i) |> pull("id")

# get rating from llm

response <- call_openai_api(

system_prompt = system_prompt,

user_prompt = cur_convo

)

# assign to output list

responses[[cur_id]] <- response
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# report progress (does not work well in colab)

cat(i, "/ 10 completed.\n")

}

# Let's inspect the responses!

cat(responses[[2]])

A.7 Structuring LLM Annotations

A.7.1 Structured Output

To force the LLM to produce outputs in formats specified by you, you need to use the
‘$extract_data()‘ method instead of the ‘$chat‘ method.

Below, we define our desired output format as:

• "specificity_score": an integer (either 0, 1 or 2) reflecting the specificity of a conver-
sation.

• "reasoning": a string that provides the model’s reasoning.

output_structure <- type_object(

specificity_score = type_integer("The specificity score of the entire

conversation on a scale of 0, 1 and 2."),

reasoning = type_string("Your reasoning process.")

)

call_openai_api_structured <- function(system_prompt, user_prompt) {

chat <- chat_openai(

model = "gpt-4o-mini",

system_prompt = system_prompt,

seed = 42,

api_args = list(temperature = 0, max_tokens = 1000),

echo = "none" #suppress the output from being printed

)

response <- chat$extract_data(user_prompt, type = output_structure)

return(response)

}
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A.7.2 A Single Prompt Demo

structured_response <- call_openai_api_structured(system_prompt, df[["conversation"]][1])

print(structured_response)

A.7.3 Multiple Prompts Demo

structured_responses <- list()

for (i in 1:10) {

# extract current info

cur_convo <- df |> slice(i) |> pull("conversation")

cur_id <- df |> slice(i) |> pull("id")

# get rating from llm

response <- call_openai_api_structured(

system_prompt = system_prompt,

user_prompt = cur_convo

)

# assign to output list

structured_responses[[cur_id]] <- response

# report progress (does not work well in colab)

cat(i, "/ 10 completed.\n")

}

A.8 Evaluate Annotation Quality

The kripp.alpha() function from the irr package can be used to calculate agreement
(i.e., Krippendorff’s Alpha) of specificity scores between two raters (e.g., LLMs and human
experts). Let’s check the agreement between the specificity scores we got from the LLM
above and the human expert-coded specificity scores!

# create rating matrix (rows = raters, cols = items)

rating_matrix <- rbind(

df |> slice(1:10) |> pull(score_specificity_human),

response_df |> pull(specificity_score)

)
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# compute agreement (0 - 1)

kripp.alpha(rating_matrix, method = "interval")
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